Semi‑formal Framework of Petal‑aether Multiverse¹
Core Objects & Notation
• Petals (realms):
\{P_i\}_{i=1}^{N}, each a smooth manifold with metric g_i and boundary \partial P_i.
• Binding calyx (cohesion layer):
A higher‑dimensional manifold B that carries the “negative‑space” field.
• Core (origin locus):
C \subset B, a point or compact submanifold encoding shared source conditions.
• Negative‑space field (shaper):
\Phi: B \rightarrow \mathbb{R} (or \mathbb{C}) whose topology determines petal count, spacing, and orientation.
• Aether bundle (interior medium):
On each petal, a bundle \mathcal{A}_i with sections A_i^{(\alpha)} labeling distinct aether “flavors.”
• Adjacency graph (flower plan):
G with vertices i and weighted edges w_{ij} induced by the geometry of B and level‑sets of \Phi.
Geometry from Negative Space
• Boundary shaping:
The petal edges sit on level sets of \Phi pulled back to B. Mean curvature of each boundary couples to the normal gradient of \Phi:
H\big|_{\partial P_i} \;=\; \kappa_i \, \nabla_{n}\Phi \big|_{\partial P_i},
• where \kappa_i encodes petal “stiffness.”
• Petal count and arrangement:
Let \{p_k\} be the nondegenerate critical points of \Phi on B. Then
N \approx \#\{p_k \text{ with } \text{index}(p_k)=\iota^\ast\},
• choosing a Morse index \iota^\ast that yields stable petals. Petal “angles” follow the phases of \Phi if \Phi is complex, giving a natural spiral or radial phyllotaxis.
• Calyx constraint:
A global constraint ties curvature of B to the negative‑space energy:
\int_{B} \big( \|\nabla \Phi\|^{2} + V(\Phi) \big) \, d\mathrm{vol}_B \;=\; \lambda \int_{B} R_B \, d\mathrm{vol}_B,
• linking the “tension” of the intervals to the cohesion of the bloom.
Aethers as Interior Physics
• Aether operators and effective dimension:
Each aether flavor \alpha on P_i has a preferred differential operator \mathcal{D}^{(\alpha)}_i (e.g., Laplace‑type), with heat kernel trace
K^{(\alpha)}_i(t) \;=\; \mathrm{Tr}\, e^{-t \mathcal{D}^{(\alpha)}_i} \;\sim\; t^{-d_{s,i}^{(\alpha)}/2} \quad (t \to 0^+),
• defining an effective spectral dimension d_{s,i}^{(\alpha)}. “Three‑dimensional space” is re‑derived when d_{s,i}^{(\alpha)} \approx 3 for the dominant aether on P_i.
• Metric‑aether coupling:
Petal metric responds to local aether density:
\mathrm{Ric}(g_i) - \tfrac{1}{2}R(g_i)g_i \;=\; T\big(A_i^{(\alpha)}, g_i\big),
• where T is the aether stress‑energy built from \mathcal{D}^{(\alpha)}_i and interaction terms.
• Aether palette:
• Carrier aether: \alpha = 0. Sets baseline spectral dimension and causality.
• Form aethers: \alpha \in F. Stabilize structures; lower d_{s} locally to “carve” forms.
• Transitive aethers: \alpha \in T. Mediate exchanges across petals; couple strongly on boundaries.
Dynamics of Blossoming
• Action functional:
S \;=\; \sum_{i=1}^{N} \int_{P_i} \Big( \mathcal{L}_{\text{grav}}(g_i) \,+\, \sum_{\alpha} \mathcal{L}_{\text{aether}}(A_i^{(\alpha)}, g_i) \Big) \, d\mathrm{vol}_{P_i} \;+\; \int_{B} \big( \tfrac{1}{2}\|\nabla \Phi\|^2 - V(\Phi) \big) \, d\mathrm{vol}_B.
• Petal birth/annihilation (bifurcations):
As a control parameter \mu deforms V(\Phi;\mu), critical points appear/disappear via saddle‑nodes; petals nucleate/merge accordingly. The “blossom cycle” is a loop in parameter space \gamma: S^1 \to \mathcal{M}_\mu that takes N \mapsto N \pm 1 at crossings.
• Edge conditions (gluing):
On \partial P_i \subset B,
A_i^{(\alpha)}\big|_{\partial P_i} \;=\; \mathcal{U}_{ij}^{(\alpha)}\, A_j^{(\alpha)}\big|_{\partial P_j}, \quad
\big(\nabla_{n} A_i^{(\alpha)}\big)\big|_{\partial P_i} \;=\; \Xi^{(\alpha)}_{ij}\, A_j^{(\alpha)}\big|_{\partial P_j},
• where \mathcal{U}_{ij}^{(\alpha)} are interface morphisms determined by \Phi and adjacency weights w_{ij}.
Interfaces, Observables, & Predictions
• Resonance portals:
Interfaces become transmissive when spectral bands align:
\sigma\big(\mathcal{D}^{(\alpha)}_i\big) \cap \sigma\big(\mathcal{D}^{(\alpha)}_j\big) \neq \varnothing \;\;\Rightarrow\;\; \text{enhanced flux across } \partial P_i \cap \partial P_j.
• Edge anomalies (signatures):
• Boundary modes: Effective d_s drops by ~1 on \partial P_i, yielding confined “rim” phenomena.
• Dual constants: Conjugate parameter pairs (\eta_i, \tilde{\eta}_j) appear equal in magnitude on adjacent petals when \Phi phase difference hits quantized values.
• Interference patterns: Standing‑wave lattices on B at \nabla^2 \Phi + \omega^2 \Phi = 0 dictate petal spacing ratios.
• Lived correlates (for your practice):
¹Occams' Razor reduces an infinite uncreated spatial medium to emergence within a negative existence to respect non-existent spatial parameters via the blossoming macrocosms.